Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460407

ABSTRACT

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Subject(s)
Acetates , Chlormequat , Iron Overload , Phenols , Spermatogenesis , Animals , Male , Mice , Rats , Chlormequat/metabolism , Chlormequat/toxicity , Iron Overload/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Seeds , Spermatogenesis/drug effects , Testis , eIF-2 Kinase/drug effects , eIF-2 Kinase/metabolism
2.
Food Chem Toxicol ; 185: 114475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286265

ABSTRACT

Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.


Subject(s)
Acetates , Chlormequat , Phenols , Proto-Oncogene Proteins c-akt , Mice , Rats , Male , Animals , Chlormequat/metabolism , Chlormequat/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Calmodulin/metabolism , Calmodulin/pharmacology , Semen/metabolism , Signal Transduction , Spermatozoa , Tyrosine/metabolism
3.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37908164

ABSTRACT

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Subject(s)
Adipogenesis , Lanthanum , Mice , Animals , Lanthanum/toxicity , Mice, Inbred C57BL , Wnt Signaling Pathway , beta Catenin/metabolism , Cell Differentiation
4.
Toxicology ; 501: 153713, 2024 01.
Article in English | MEDLINE | ID: mdl-38135142

ABSTRACT

Bis (2-ethylhexyl) tetrabromophthalate (TBPH) is a new type of brominated flame retardant. Some studies suggest that TBPH exposure may be associated with thyroid damage. However, there is a paucity of research on the authentic exposure-related effects and molecular mechanisms in animals or cells. In this study, we used male Sprague-Dawley (SD) rats and the Nthy ori3-1 cell line (the human thyroid follicular epithelial cell) to explore the potential effects of TBPH (5, 50, 500 mg/kg and 1, 10, 100 nM) on the thyroid. The genes and their proteins of cytokines and thyroid-specific proteins, thyroglobulin (TG), thyroid peroxidase (TPO), and sodium iodide cotransporter (NIS) were examined to investigate the possible mechanisms. At the end of the experiment, it was found that 50 and 500 mg/kg TBPH could increase the levels of total thyroxine (TT4) and free thyroxine (FT4) significantly. The messenger RNAs (mRNAs) of Tg, Tpo, Interleukin-6 (Il6), and Interleukin-10 (Il10) in the thyroid tissues from the rats treated with 500 mg/kg were enhanced clearly. Meanwhile, the mRNAs of TG, TPO, IL6, and IL10 were elevated in Nthy ori3-1 cells treated with 100 nM TBPH as well. The mRNAs of TG and TPO were elevated after the knockdown of IL6. To our surprise, after the knockdown of IL10 or the treatment of anti-IL-10-receptor (anti-IL-10-R) antibody, the mRNAs of TG and TPO were significantly reduced, and the effects of TBPH were diminished. In conclusion, our results suggested that the IL-10-IL-10R-TG/TPO-T4 axis is one important target of TBPH in the thyroid.


Subject(s)
Thyroglobulin , Thyroid Gland , Male , Humans , Rats , Animals , Thyroglobulin/genetics , Thyroglobulin/metabolism , Thyroglobulin/pharmacology , Interleukin-10/genetics , Thyroxine , Interleukin-6/metabolism , Rats, Sprague-Dawley , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , RNA, Messenger/metabolism
5.
Pestic Biochem Physiol ; 196: 105640, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945238

ABSTRACT

Plant growth regulators (PGRs) are currently one of the widely used pesticides, as being considered to have relatively low toxicity compared with other pesticides. However, widespread use may lead to overexposure from multiple sources. Exposure to PGRs is associated with different toxicity that affects many organs in our body, such as the toxicity to testis, ovaries, liver, kidneys and brain. In addition, some PGRs are considered potential endocrine disrupting chemicals. Evidence exists for development and reproductive toxicity associated with prenatal and postnatal exposure in both animals and humans. PGRs can affect the synthesis and secretion of sex hormones, destroy the structure and function of the reproductive system, and harm the growth and development of offspring, which may be related to germ cell cycle disorders, apoptosis and oxidative stress. This review summaries the reproductive and developmental toxicity data available about PGRs in mammals. In the future, conducting comprehensive epidemiological studies will be crucial for assessing the reproductive and developmental toxicity resulting from a mixture of various PGRs, with a particular emphasis on understanding the underlying molecular mechanisms.


Subject(s)
Pesticides , Plant Growth Regulators , Humans , Pregnancy , Male , Animals , Female , Reproduction , Pesticides/toxicity , Oxidative Stress , Mammals
6.
Food Chem Toxicol ; 180: 114027, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696466

ABSTRACT

As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.

7.
Toxicology ; 495: 153601, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37531992

ABSTRACT

2-Acetyl-4-tetrahydroxybutylimidazole (THI), a by-product of Class Ⅲ caramel color, is generally recognized to cause lymphopenia in mammals. However, it remains unknown whether THI exposure during gestation and lactation causes damage to the immune system of offspring. In this study, pregnant Balb/c mice were gavaged with 0, 0.5, 2.5 and 12.5 mg/kg THI from gestation day (GD) 6 to postanal day (PND) 21, after which we treated another batch of dams from GD6 to PND21 and the offspring for 3 weeks after weaning with 0, 2, 10, 50 mg/L THI in drinking water respectively, and investigated the immunological anomalies of dams and offspring. The results showed that lymphopenia was observed in dams but not in weaning pups on PND21, which were exposed to THI during gestation and lactation. 2 mg/L THI and 2.5 mg/kg THI began to cause a remarkable reduction of the numbers of white blood cells and lymphocytes in dams. Besides both the cellular and the humoral immune response was not affected in weaning pups, which were measured by plaque-forming cell (PFC) assay and delayed-type hypersensitivity (DTH) assay respectively. Furthermore, THI could be detected in the plasma of dams with a dose-dependent manner, but not in that of both female and male weaning pups. In both male and female offspring being treated with 10 and 50 mg/L THI for another 3 weeks after weaning, lymphocytopenia was observed and T lymphocytes including CD4+ and CD8+ cells were significantly reduced in their spleens except lymph nodes. 10 and 50 mg/L THI treatment increased CD4+ and CD8+ single positive cells in thymus of female and male weaning mice. Mitogen-induced proliferation ability of T cells in the spleen and lymph nodes was impaired in female weaning mice exposed 50 mg/L THI, while male weaning mice treated with 10 and 50 mg/L THI showed impairment in the spleen but not lymph nodes. Based on the results in this study, no observed adverse effect level (NOAEL) for 3-week THI treatment in weaning mice was considered to be 2 mg/L (0.30 mg/kg bw for female mice and 0.34 mg/kg bw for male mice). And NOAEL for THI treatment in dams might be set to 0.5 mg/kg bw/day. Collectively from the perspective of NOAEL, offspring are not more sensitive than dams or adult mice.


Subject(s)
Lymphopenia , Prenatal Exposure Delayed Effects , Humans , Mice , Female , Animals , Male , Pregnancy , Mice, Inbred BALB C , Lactation , Immunity , Prenatal Exposure Delayed Effects/chemically induced , Mammals
8.
Chemosphere ; 339: 139680, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37524266

ABSTRACT

Light pollution is now associated with an increased incidence of mental disorders in humans, and the unfixed light pattern (ULP) is a common light pollution that occurs in such as rotating shift work. However, how much contribution the ULP has to depression and its potential mechanism are yet unknown. Our study aimed to investigate the effect of the ULP on depressive-like behaviors in mice and to explore the links to the circadian-orexinergic system. Male C57BL/6 J mice were exposed to the ULP by subjecting them to an alternating light pattern every 6 days for 54 days. The tail suspension test (TST) and forced swimming test (FST) were conducted to assess depressive-like behaviors. The rhythm of locomotor activity and the circadian expression of cFOS in the suprachiasmatic nucleus (SCN), clock genes in the liver, and corticosterone (CORT) in serum were detected to observe changes in the circadian system. The circadian expression of orexin-A (OX-A) in the lateral hypothalamus area (LHA) and dorsal raphe nucleus (DRN) and serotonin (5-HT) in the DRN were measured to determine alterations in the orexinergic system. The results showed that mice exposed to the ULP exhibited increased immobility time in the TST and FST. The ULP significantly disrupted the circadian rhythm of locomotor activity, clock genes in the liver, and CORT in the serum. Importantly, when exposed to the ULP, cFOS expression in the SCN showed decreased amplitude. Its projection area, the LHA, had a lower mesor of OX-A expression. OX-A projection to the DRN and 5-HT expression in the DRN were reduced in mesor. Our research suggests that the ULP contributes to depressive-like behaviors in mice, which might be related to the reduced amplitude of circadian oscillation in the SCN and hypoactivity of the orexinergic system. These findings may provide novel insights into rotating shift work-related depression.


Subject(s)
Dorsal Raphe Nucleus , Serotonin , Humans , Mice , Male , Animals , Serotonin/metabolism , Mice, Inbred C57BL , Dorsal Raphe Nucleus/metabolism , Circadian Rhythm , Orexins , Light
9.
Environ Res ; 232: 116321, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37271434

ABSTRACT

PM2.5 still poses a threat to public health even at very low levels. Black carbon (BC) is a key component of PM2.5. Macrophage extracellular traps (METs) are a means by which macrophages capture and destroy invading pathogens. Necroptosis is an inflammatory programmed cell death. However, there is no research on the crosstalk mechanism between necroptosis and METs after BC exposure. In our study, fluorescence labeling, fluorescent probes, qPCR, and immunofluorescence were applied. Our research found that under normal physiological conditions, when macrophages receive external stimuli (in our experiment, phorbol 12-myristate 13-acetate (PMA)), they will form METs, thus exhibiting innate immune function. However, exposure to BC can cause necroptosis in macrophages accompanied by increased levels of ROS and cytosolic calcium ions as well as altered expression of inflammatory factors and chemokines that prevent the formation of METs, and weakening innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibits the formation of METs. Our experiment will enrich the understanding of the mechanism of macrophage injury caused by BC exposure, provide a new direction for studying harmful atmospheric particle toxicity, and propose new therapeutic insights for diseases caused by atmospheric particulate matter. This study is the first to explore the crosstalk mechanism between necroptosis and METs after BC exposure.


Subject(s)
Extracellular Traps , Extracellular Traps/metabolism , Necroptosis , Macrophages , Particulate Matter/metabolism , Carbon/metabolism
10.
Environ Pollut ; 329: 121655, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37068650

ABSTRACT

The impacts of environmental PM 2.5 on public health have become a major concern all over the world. Many studies have shown that PM 2.5 still poses a threat to public health even at very low levels. Physical or chemical reactions occur between primary particles and other components in the environment, which changes the properties of primary particles. Such newly formed particles with changed properties are called secondary particles. Ozone-oxidized black carbon (oBC) is a key part of PM 2.5 and a representative secondary particle. Macrophages extracellular traps (METs) is a means for macrophages to capture and destroy invading pathogens, thereby exercising innate immunity. Necroptosis is a kind of programmed cell death, which is accompanied by the destruction of membrane integrity, thus inducing inflammatory reaction. However, there is no research on the crosstalk mechanism between necroptosis and MET after oBC exposure. In our study, AO/EB staining, SYTOX Green staining, fluorescent probe, qPCR, Western blot, and immunofluorescence were applied. This experiment found that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in our experiment: phorbol 12-myristate 13-acetate (PMA)), they will form METs, capture and kill pathogens, thus exerting innate immune function. However, exposure to oBC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, and prevent the formation of METs, lose the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. This study was the first to explore the crosstalk mechanism between necroptosis and METs after oBC exposure.


Subject(s)
Extracellular Traps , Ozone , Ozone/chemistry , Necroptosis , Macrophages/metabolism , Particulate Matter/metabolism , Carbon/metabolism
11.
Environ Sci Technol ; 57(15): 6095-6107, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37018376

ABSTRACT

1,4-Naphthoquinone-coated BC (1,4 NQ-BC) is an important component of PM2.5 and a representative secondary particle. However, there is no research on the crosstalk mechanism between necroptosis and macrophage extracellular traps (METs) after 1,4 NQ-BC exposure. In this study, we treated RAW264.7 cells with 50, 100, and 200 mg/L 1,4 NQ-BC for 24 h, with 10 µM necrostatin-1 for 24 h, and with 2.5 µM phorbol 12-myristate 13-acetate (PMA) for 3 h. Our experiment revealed that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in this experiment, PMA), they will form METs and capture and kill pathogens, thus exerting innate immune function. However, exposure to 1,4 NQ-BC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, prevent the formation of METs, lead to loss of the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. Our study was the first to explore the crosstalk mechanism between necroptosis and METs. This experiment will enrich the mechanism of macrophage injury caused by 1,4 NQ-BC exposure.


Subject(s)
Extracellular Traps , Particulate Matter , Extracellular Traps/metabolism , Necroptosis , Macrophages/metabolism , Carbon/metabolism
12.
Environ Toxicol ; 38(8): 1939-1950, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37102272

ABSTRACT

Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Mice , Humans , Animals , Male , Female , Maternal Exposure/adverse effects , Nitrates/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Mice, Inbred BALB C , Yttrium/adverse effects
13.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508801

ABSTRACT

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Subject(s)
Apoferritins , Autophagy , Interleukin-33 , Lysosomes , Naphthoquinones , Soot , Humans , Apoferritins/metabolism , Autophagy/drug effects , Interleukin-33/metabolism , Macrophages/drug effects , Naphthoquinones/toxicity , Soot/toxicity , Up-Regulation , Lysosomes/drug effects
14.
Toxicol Lett ; 374: 57-67, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549429

ABSTRACT

With the increasing application of cerium and rare-earth elements (REEs), cerium exposure is becoming more widespread. However, there remains a paucity of evidence on developmental immunotoxicity of cerium. This study was designed to examine the developmental immunotoxicity of gestational and postnatal exposure to cerium nitrate (CN) in BALB/C mouse offspring. Dams were given CN by oral gavage at 0, 0.002, 0.02 and 0.2 mg/kg from gestation day 5 (GD5) to postnatal day 21 (PND 21). On PND 21, the highest dose of CN significantly suppressed the NK cell cytotoxicity, and reduced the proportions of NK cells in peripheral blood and spleen of both female and male pups, however, the proportions of monocytes in peripheral blood and macrophages in spleen only increased in female pups. For adaptive immunity, on PND 21, the suppression of T/B lymphocyte proliferation, humoral and cellular immune responses (number of splenic plaque-forming cells, PFC, and delayed-type hypersensitivity, DTH) were observed in both female and male pup mice exposed to 0.2 mg/kg CN. However, the fall of proportions of T/B lymphocytes in peripheral blood (PB), spleen and mesenteric lymph node (MLN) only found in female pups at 0.2 mg/kg on PND 21. Most indications recovered to normal after 3-week cessation of CN exposure, except the reduction of DTH and PFC. From the findings in this study, the lowest-observed-adverse-effect level (LOAEL) of CN for developmental immunotoxicity was estimated to be 0.2 mg/kg bw per day.


Subject(s)
Cerium , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Male , Female , Mice, Inbred BALB C , Maternal Exposure/adverse effects , Spleen , Cerium/toxicity , Prenatal Exposure Delayed Effects/pathology
15.
Plant Dis ; 107(7): 2197-2200, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36451305

ABSTRACT

The fungal genus Alternaria, which causes a variety of crop diseases, is widely distributed in the world. Alternaria leaf blight, caused by Alternaria dauci, is one of the most common and destructive diseases in carrot. The infection of A. dauci leads to dramatic decay on both foliage and taproot in severe cases, which results in significant yield losses. In this study, we sequenced and assembled the genome of A. dauci isolate CALB1, which isolated from the major carrot producing areas of China. A total of 65 contigs were assembled, and the estimated genome size was 34.9 Mb. The draft genome of A. dauci can be used for comparative genomic analysis of Alternaria species and provide genetic information for further research on plant-pathogen interactions.


Subject(s)
Alternaria , Daucus carota , Alternaria/genetics , Daucus carota/microbiology , Plant Diseases/microbiology , China
16.
J Appl Toxicol ; 43(3): 402-415, 2023 03.
Article in English | MEDLINE | ID: mdl-36065135

ABSTRACT

Lanthanum (La) as a rare earth element is widely used in agriculture, industry, and medicine. It has been suggested in several studies that La might influence glycolipid metabolism in vivo. In this study, we used 3T3-L1 preadipocytes as in vitro cell model to elucidate the effects of La(NO3 )3 on adipogenesis and the underlying mechanisms. The results showed that La(NO3 )3 could inhibit the adipogenic differentiation of 3T3-L1 preadipocytes, which showed a decrease in lipid accumulation and the downregulation of specific adipogenic transcription factors. La(NO3 )3 exerted its inhibitory effect mainly at the early differentiation stage. Furthermore, La(NO3 )3 influenced the S-phase entry and cell cycle process during the mitotic clonal expansion and regulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expressions of the proteins in phosphatidylinositol 3-kinase (PI3K)/Akt pathway at the early stage of differentiation. Besides, La(NO3 )3 upregulated the expressions of wnt10b mRNA and ß-catenin protein and promoted the nucleus translocation of ß-catenin. Additionally, we found that La(NO3 )3 could promote the growth of 3T3-L1 preadipocytes both with and without MDI (3-isobutyl-1-methylxanthine [IBMX], dexamethasone [Dex], and insulin) stimulation. Collectively, these results indicated that La(NO3 )3 could inhibit adipogenesis in 3T3-L1 preadipocytes and influence cell proliferation.


Subject(s)
Adipogenesis , Lanthanum , Animals , Mice , Lanthanum/toxicity , 3T3-L1 Cells , Phosphatidylinositol 3-Kinases , Cell Differentiation
17.
Front Genet ; 13: 1047890, 2022.
Article in English | MEDLINE | ID: mdl-36437940

ABSTRACT

Members of the family of Phosphatidy Ethanolamine-Binding Protein (PEBP) have been shown to be key regulators of the transition of plants from vegetative to reproductive phases. Here, a total of 12 PEBP proteins were identified in the carrot (Daucus carota L.) genome and classified into FT-like (4), TFL1-like (6), and MFT-like 2) subfamilies, that had different lengths (110-267 aa) and were distributed unevenly across seven chromosomes. Moreover, 13 and 31 PEBP proteins were identified in other two Apiaceae species, celery (Apium graveolens L.) and coriander (Coriandrum sativum L.). The phylogenetic and evolutionary results of these PEBP family proteins were obtained based on the protein sequences. In the three Apiaceae species, purifying selection was the main evolutionary force, and WGD, segmental duplication, and dispersed duplication have played key roles in the PEBP family expansion. The expression analysis showed that carrot PEBP genes exhibited relatively broad expression patterns across various tissues. In the period of bolting to flowering, the carrot FT-like subfamily genes were upregulated as positive regulators, and TFL1-like subfamily genes remained at lower expression levels as inhibitors. More interestingly, the members of carrot FT-like genes had different temporal-spatial expression characteristics, suggesting that they have different regulatory functions in the carrot reproductive phase. In summary, this study contributes to our understanding of the PEBP family proteins and provides a foundation for exploring the mechanism of carrot bolting and flowering for the breeding of cultivars with bolting resistance.

18.
Environ Toxicol ; 37(10): 2434-2444, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35776887

ABSTRACT

Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.


Subject(s)
Endothelial Cells , Proto-Oncogene Proteins c-akt , Carbon , Cell Survival , Endothelial Cells/metabolism , Humans , Interleukin-33/genetics , Interleukin-33/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Transcription Factor AP-1/metabolism
19.
Sci Total Environ ; 835: 155357, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35452731

ABSTRACT

BACKGROUND: As air pollution has been paid more attention to by public in recent years, effects and mechanism in particulate matter-triggered health problems become a focus of research. Lysosomes and mitochondria play an important role in regulation of inflammation. Interleukin-33 (IL-33) has been proved to promote inflammation in our previous studies. In this research, macrophage cell line RAW264.7 was used to explore the potential mechanism of upregulation of IL-33 induced by 1,4-naphthoquinone black carbon (1,4-NQ-BC), and to explore changes of lysosomes and mitochondria during the process. RESULTS: 50 µg/mL 1,4-NQ-BC exposure for 24 h dramatically increased expression of IL-33 in RAW264.7 cells. Lysosomal membrane permeability was damaged by 1,4-NQ-BC treatment, and higher mitochondrial membrane potential and ROS level were induced by 1,4-NQ-BC. The results of proteomics suggested that expression of ferritin light chain was increased after cells were challenged with 1,4-NQ-BC, and it was verified by Western blot. Meanwhile, expressions of p62 and LC3B-II were increased by 50 µg/mL 1,4-NQ-BC in RAW264.7 cells. Ultimately, expression of IL-33 could return to same level as control in cells treated with 50 µg/mL 1,4-NQ-BC and 50 µM deferoxamine combined. CONCLUSIONS: 1,4-NQ-BC induces IL-33 upregulation in RAW264.7 cells, and it is responsible for higher lysosomal membrane permeability and ROS level, lower mitochondrial membrane potential, and inhibition of autophagy. Ferritin light chain possibly plays an important role in the upregulation of IL-33 evoked by 1,4-NQ-BC.


Subject(s)
Apoferritins , Carbon , Interleukin-33 , Naphthoquinones , Animals , Apoferritins/metabolism , Humans , Inflammation , Interleukin-33/metabolism , Mice , Naphthoquinones/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Soot/chemistry , Soot/pharmacology , Up-Regulation/drug effects
20.
Toxicol Lett ; 362: 17-25, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35091016

ABSTRACT

Lanthanum, a major rare earth element, can exert detrimental effects on the adult immune system, but its developmental immunotoxicity (DIT) remains obscure. This study was designed to evaluate the DIT of lanthanum nitrate (LN) and the self-recovery of LN-induced DIT 21 days following cessation of exposure. BALB/c pregnant dams were exposed to 0, 0.1, 1, and 10 mg/kg body weight/day LN by gavage during gestation and lactation. Results showed that in male offspring, LN markedly inhibited the adaptive immunity at postanal day 21 (PND21) and the inhibitory effect on cellular immunity continued to PND42 (after three weeks of self-recovery). In female offspring, LN suppressed cellular immunity at both PND21 and PND42. Moreover, decreased relative organ weight of thymus, humoral immunity and proportion of double-positive T cells in thymus were also observed at PND42. Bcl-xl protein level decreased in thymus of female at PND42, while the level of ß-catenin increased. These changes might contribute to accelerating the degeneration and weight loss of thymus. Overall, in-utero and postanal exposure to LN could induce impairments of immunity in offspring, especially the female, and adaptive immunosuppression would persist throughout development into adulthood. The LOAEL of LN for DIT should be 1 mg/kg.


Subject(s)
Lanthanum , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Immunity, Humoral , Lactation , Lanthanum/toxicity , Male , Mice , Mice, Inbred BALB C , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...